SISTEMA DE CONTAJE BETA "LUDLUM" CON DETECTORES GM

Chacón, D.K.¹ y Pabón, V.M.²

^{1, 2} Universidad Distrital Francisco José de Caldas Licenciatura en Química Grupo de Investigación en Ciencia y Tecnología Nuclear Bogotá. Colombia

RESUMEN

Esta investigación se realizó con el fin de incentivar y complementar la formación de los jóvenes en el campo de las aplicaciones de la ciencia y tecnología nuclear, con experimentos en el contador Ludlum ("Scaler Ratemeter"-2200) acoplado a detectores Geiger-Müller (GM) 44-7 de ventana terminal y 44-9 tipo torta ("pancake") con fuente de radiación β (⁹⁰Sr). Para cada detector se estableció el voltaje de trabajo (900 V) a partir de la curva característica, al igual que algunos parámetros de calidad sobre el desempeño de dichos detectores. También se realizaron experimentos como la Ley del inverso cuadrado y estadística de contaje, con la cual se determinó que los datos cumplen con una distribución normal cuyo valor medio se encuentra entre 25234,2 - 25290,3 para un intervalo de confianza de 95%. Estos y otros experimentos que se realizaron en el estudio, hacen parte de un manual para difundir el conocimiento básico de las ciencias nucleares para estudiantes en química, física, ingeniería, medicina nuclear, etc.

1. INTRODUCCIÓN

Por cuanto la instrumentación nuclear objeto de esta investigación está dedicada a la medida de radiaciones ionizantes, de manera breve se hace una introducción sobre ellas. El descubrimiento casual de la radioactividad natural por Henri Becquerel en 1896, abrió paso para nuevas investigaciones del núcleo atómico, debido a los estudios sobre la fluorescencia de las sales de uranio, que lo llevaron a concluir que se trataba de una radiación diferente a la de los rayos-X descubiertos por Röntgen el año anterior. En relación con estas investigaciones, Ernest Rutherford (1899-1902) confirmó la existencia de las radiaciones α , β y γ , por los experimentos de interacción con la materia [1].

Puesto que estas radiaciones, de origen natural ("Natulally Occurring Materials Radioctive", NORM) y antropogénico (aparición que se da principalmente desde el Proyecto Manhattan), no son visibles, surgió la necesidad de construir instrumentos, como el detector GM cuyo invento se debe a Hans Geiger y Walter Müller (1928) [2], para identificarlas y medirlas con el fin de establecer sus aplicaciones y efectos en el ser humano, cuya mayor exposición (90%) es por radiación natural, que proviene del cosmos, de materiales y elementos radioactivos descendientes de las familias ²³⁸U, ²³⁵U y ²³²Th presentes en la corteza terrestre, del aire ($^{14}CO_2$) y de alimentos (^{40}K); solo el 10% restante corresponde a la radiación artificial por el uso de radionúclidos en medicina, producción de electricidad en reactores de potencia y aplicación de fuentes radioactivas en la industria [3].

¹ katta130@hotmail.com; ² vitia01@hotmail.com

Por tanto se hace indispensable difundir entre los jóvenes, el conocimiento sobre este tipo de radiaciones, su comportamiento y efectos, así como los instrumentos que se emplean para identificarlas, ya que todo el tiempo se está expuesto a ellas. El Grupo de Investigación en Ciencia y Tecnología Nuclear de Licenciatura en Química de la Universidad Distrital Francisco José de Caldas, consciente de esta situación, se propuso diseñar una serie de experimentos nucleares con detectores GM, que se recopilaron en un manual para práctica de los estudiantes en áreas afines.

2. METODOLOGÍA

En esta investigación se empleó el contador "Scaler Ratemeter" modelo 2200 con el software "LMI", los detectores GM modelos 44-7 de ventana terminal y 44-9 tipo torta ("pancake"), todos marca "Ludlum", así como una fuente β de ⁹⁰Sr, "Philip Harris".

Para todos los experimentos se registró la radiación de fondo ("background") con el fin de corregir la tasa de contaje y se estableció el voltaje óptimo de trabajo (V_T) a partir de la curva característica. Los tiempos de contaje así como la distancia fuente-detector (geometría), varían dependiendo del experimento, para lo cual se utilizó un porta fuentes de diseño propio. De la totalidad de experimentos, en este documento solo se referencian algunos de ellos.

3. RESULTADOS Y DISCUSIÓN

Como los sistemas de detección de las radiaciones requieren parámetros mínimos de calibración para su funcionamiento, los resultados que se muestran a continuación comprenden la curva característica para cada detector de la cual se toman varios de ellos, y dos experimentos nucleares que se llevaron a cabo con este tipo de instrumentación.

3.1. Curva característica de los detectores GM 44-7 y 44-9 y determinación del voltaje de trabajo $V_{\rm T}$

El V_T se estableció sobre la curva característica, que relaciona la tasa de contaje en cuentas por minuto (CPM) respecto al voltaje que se aplica a los detectores (Tablas 1 - 2). Se usó fuente de 90 Sr, tiempo de contaje 2 min. y distancia fuente - detector 10 cm.

Como se puede observar en las Figuras 1 y 2, los rangos de voltaje de inicio (V₁) y fin (V₂) de la meseta, corresponden a la zona en la que hay menor variación en la tasa de contaje, por permanecer casi constante, en comparación con el aumento de voltaje, rango que es adecuado para establecer el V_T. Para ello, se aplicaron las ecuaciones (1) y (2), en donde la diferencia de voltaje, ($V_2 - V_1$), determina la longitud de la meseta [2], [4].

$$V_T = V_1 + 50V \tag{1}$$

$$V_T = \frac{V_2 - V_1}{2} + V_1 \tag{2}$$

Otro parámetro que se tuvo en cuenta fue el porcentaje de inclinación (pendiente) de la meseta por cada 100 V, que se define por la ecuación (3) donde T_1 y T_2 corresponden a las tasas de contaje de inicio y fin de la meseta:

$$\% \frac{Inclination}{100 V} = \left(\frac{T_2 - T_1}{T_1}\right) \left(\frac{100}{V_2 - V_1}\right) 100\%$$
(3)

Voltaje	Tasa neta						
(V)	(CPM)	(V)	(CPM)	(V)	(CPM)	(V)	(CPM)
500	0	630	6930	760	49554	890	56727
510	2543	640	7609	770	50563	900	56970
520	3089	650	9635	780	51445	910	57506
530	3525	660	16397	790	51978	920	57786
540	3906	670	18573	800	52704	930	58043
550	4234	680	20111	810	54299	940	58469
560	4579	690	21252	820	53375	950	58572
570	4571	700	22416	830	54104	960	59008
580	5133	710	22904	840	54404	970	53770
590	5535	720	45972	850	55612	980	60154
600	5743	730	46955	860	55635	990	61700
610	6046	740	47893	870	56589	1000	61856
620	6556	750	48789	880	56431		

Tabla 1. Curva Característica GM 44-7. Fondo $\bar{x} = 49$ CPM

Tabla 2. Curva Característica GM 44-9. Fondo $\overline{x} = 108$ CPM

Voltaje (V)	Tasa neta (CPM)	Voltaje (V)	Tasa neta (CPM)	Voltaje (V)	Tasa neta (CPM)		Voltaje (V)	Tasa neta (CPM)
570	0	680	67388	790	88300	ľ	900	96478
580	18391	690	71781	800	89504		910	98349
590	22334	700	74684	810	89943	ĺ	920	98704
600	23875	710	76305	820	91652	ĺ	930	99782
610	25774	720	78725	830	91169	ĺ	940	100682
620	41146	730	81386	840	91186		950	101039
630	47487	740	82532	850	93865		960	101174
640	53136	750	84040	860	94949	ĺ	970	101454
650	55530	760	86153	870	94706	ĺ	980	103066
660	61024	770	86246	880	95898		990	103526
670	65756	780	87150	890	96896		1000	104252

En la Tabla 3 se resumen los parámetros que se obtuvieron experimentalmente para cada detector. El V_T que el fabricante recomienda es 900 V para los dos detectores **[5]**, **[6]**, y como se observa, los valores experimentales coinciden excepto para el GM 44-9, que fue entre 5 y 10 V mayor según la fórmula de cálculo que se aplicó respectivamente, sin embargo están en el rango de longitud de la meseta donde la tasa de contaje es más o menos constante.

Por otra parte, el porcentaje de inclinación de la meseta es otro indicador de la calidad del detector y de acuerdo con los datos, se encuentra dentro del intervalo óptimo de funcionamiento que debe ser <10% [7].

Parámetros	GM 44-7	GM 44-9	Fabricante	Literatura
Inicio de curva, V ₀	510	580	-	-
Inicio de meseta, V_1	850	860	-	-
Fin de meseta, V_2	950	950	-	-
Longitud, V ($V_2 - V_1$)	100	90	-	<150
% Inclinación / 100 V	5,32	1,1	-	<10%
V _T	900	905-910	900	-

Tabla 3. Parámetros característicos para detectores GM 44-7 y 44-9

Finalmente, se observa que la tasa de contaje para el GM 44-7 es inferior, en comparación con el detector GM 44-9 para la misma fuente, bajo las mismas condiciones, lo que indica una mejor eficiencia o desempeño para la detección de radiaciones β , posiblemente por la diferencia en la geometría de los detectores (cilíndrico y "pancake").

3.2. Ley del inverso cuadrado

Con este parámetro se estableció la relación entre la tasa de contaje y la distancia fuentedetector, como se muestra en las Tablas 4 y 5. El V_T en ambos casos fue de 900 V con fuente de ⁹⁰Sr, y el contaje para cada caso fue \geq 4000 cuentas en el tiempo determinado, con el fin de obtener una precisión estadística razonable [4].

Distancia (cm)	t (min)	Cuentas	Tasa neta (CPM)
2	2	5224	2538
3	3	5600	1793
4	3	4368	1382
5	4	4453	1040
6	5	4659	858
7	6	4724	714
8	7	4732	602
9	8	4606	502
10	9	4562	433
11	10	4334	360
12	11	4098	299

Tabla 4	. Variación	ı distancia	fuente-
detector	GM 44-7]	Fondo $\overline{x} =$	74 CPM

Tabla 5. Variación distancia fuentedetector GM 44-9 Fondo \overline{x} = 109 CPM

Distancia (cm)	t (min)	Cuentas	Tasa neta (CPM)
2	1	8011	7902
3	1	5813	5704
4	1	4154	4045
5	2	6554	3168
6	2	5421	2602
7	2	4260	2021
8	3	5432	1702
9	3	4352	1342
10	4	5103	1167
11	4	4181	936
12	5	4856	862

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

Las Figuras 3 y 4 representan el ln(CPM) respecto a la distancia fuente-detector y se indica la ecuación de la recta en cada caso.

Figura 3. Ley del inverso cuadrado Detector GM 44-7

Figura 4. Ley del inverso cuadrado Detector GM 44-9

Se evidencia que al aumentar la distancia, disminuye la tasa de contaje de forma exponencial, parámetro útil en radioprotección, ya que la radiación que emite una fuente puntual o isotrópica, se comporta de manera análoga a los rayos de luz.

3.3. Estadística de contaje GM 44-7

En la investigación se realizó el tratamiento estadístico para los dos detectores, GM 44-7 y GM 44-9; puesto que los parámetros que se evaluaron son los mismos, en este artículo se hace referencia solo a los datos del primero, para lo cual se establecieron 50 mediciones independientes consecutivas cada una de 5 min., a una distancia de 10 cm y fuente de ⁹⁰Sr,

cuyo tiempo de vida media (28,79 años) **[8],** es mayor en comparación con el tiempo de medición de modo que la tasa de contaje puede considerarse constante **[2], [9]**. La Tabla 6, registra la tasa de contaje para cada medición.

Nº	Tasa neta	Nº	Tasa neta		Nº	Tasa neta	Nº	Tasa neta	Nº	Tasa neta
	(CPM)		(CPM)	_		(CPM)		(CPM)		(CPM)
1	25058	11	25185		21	25228	31	25281	41	25352
2	25110	12	25186		22	25229	32	25288	42	25356
3	25124	13	25187		23	25242	33	25292	43	25363
4	25147	14	25188		24	25246	34	25298	44	25378
5	25147	15	25198		25	25250	35	25302	45	25384
6	25156	16	25201		26	25253	36	25306	46	25388
7	25156	17	25202		27	25262	37	25318	47	25397
8	25157	18	25212		28	25266	38	25323	48	25486
9	25184	19	25216		29	25266	39	25326	49	25495
10	25184	20	25219		30	25271	40	25342	50	25507

Tabla 6. Estadística de contaje GM 44-7. Fondo $\overline{x} = 73$ CPM

Los datos de la tabla anterior se organizaron de menor a mayor para facilitar su análisis, sin embargo el equipo los arroja de manera aleatoria, comportamiento propio de los procesos nucleares, ya que bajo las mismas condiciones y contajes sucesivos, la tasa que se registra es diferente.

El análisis estadístico descriptivo correspondiente a los 50 datos, se registra en la Tabla 7; el valor promedio (\bar{x}) de 25262,24 ± 28,07 CPM, cercano al real (μ) para un intervalo de confianza de 0.95, significa que cualquier medida individual que esté entre 25234,2 - 25290,3 tendrá una confiabilidad del 95%, lo que se evidencia en el histograma de frecuencias (Figura 5), pues dicho rango se encuentra en la clase con mayor frecuencia.

Media, \overline{x}	25262,24 (± 28,07)
Mediana, M	25251,61
Moda	25183,61
Desviación estándar, σ	98,73 (82,50 - 123,08)
Coeficiente de variación, %	0,39
Rango	448,60
Mínimo	25058,01
Máximo	25506,61

 Tabla 7. Estadística descriptiva GM 44-7

Adicional a esto, los valores de mediana y moda se encuentran muy cercanos al valor \overline{x} y la desviación estándar en un rango entre 82,5036 - 123,077 CPM lo que indica una baja dispersión de los datos con un coeficiente de variación de tan solo 0,39%.

Figura 5. Histograma de frecuencias GM 44-7

Por otra parte, puesto que el valor de la media es considerablemente amplio y la desviación estándar pequeña, se asume que se cumple con una distribución normal y para corroborar este supuesto se presenta la gráfica de probabilidad normal (Figura 6), que muestra la distribución de los datos con respecto a los cuartiles superiores e inferiores.

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

En la figura anterior, la línea continua representa la tendencia de agrupación para una distribución normal, mientras que los datos de la muestra se representan en forma circular. Como se observa, la mayoría de los puntos se encuentran muy cercanos a la línea de tendencia, lo que refleja una baja dispersión por lo que se confirma el supuesto de distribución normal.

4. CONCLUSIONES

El uso de instrumentación nuclear en el estudio de las radiaciones ionizantes, en este caso de los detectores GM, facilita el entendimiento de sus características, comportamiento y la manera como se puede proteger contra ellas (Ley del inverso cuadrado); además para demostrar que a pesar de no ser visibles, están presentes en el entorno, lo que se comprueba con las lecturas de fondo que registra el equipo que se relacionan especialmente con la radiación natural.

En cuanto a los parámetros de calidad, por los datos de longitud de la meseta (100 V y 90 V) y el porcentaje de inclinación (5.32 y 1.1) para los detectores GM 44-7 y GM 44-9 respectivamente, obedecen a los valores establecidos por la literatura (longitud < 150 V e % inclinación < 10), resultado esperado ya que son equipos nuevos.

Finalmente, por el tratamiento estadístico de los datos se puede concluir que estos son confiables ya que tienen un coeficiente de variación muy bajo (0,39%) al igual que la desviación estándar y siguen una distribución normal.

5. REFERENCIAS

- 1. Grupen, C., Introduction to Radiation Protection: Practical Knowledge for Handling Radioactive Sources, Springer, New York, USA, (2010).
- 2. Knoll G. F., *Radiation Detection and Measurement*, 3rd ed., John Wiley & Sons, New York, USA, (2000).
- 3. International Atomic Energy Agency IAEA, *Radiation Biology: A Handbook for Teachers and Students*, IAEA, Vienna, Austria, (2010).
- 4. ORTEC, "Experiments in Nuclear Science: Experiment IV-2 Geiger Counting", 4th ed., AMTEK, Oak Ridge, Tennessee, Application Note AN34, <u>http://www.ortec-online.com/Service-Support/Library/Experiments-Fourth.aspx</u>.
- 5. Ludlum Model 44-7 "Alpha, Beta, Gamma Detector", Ludlum, Texas, USA, (2012).
- 6. Ludlum Model 44-9 "Alpha, Beta, Gamma Detector", Ludlum, Texas, USA, (2010).
- 7. Kamal A., Particle Physics, Springer, Texas, USA, (2014).
- 8. Korea Atomic Energy Research Institute, *AtomKaeri: Table of nuclides*, KAERI, Seúl, <u>http://atom.kaeri.re.kr/index.html</u>, (2000).
- 9. Tavernier S., *Experimental Techniques un Nuclear and Particle Physics*, Springer, New York, USA, (2010).